Solving Pushdown Games with a Y35 Winning
Condition*

Thierry Cachat, Jacques Duparc, and Wolfgang Thomas

Lehrstuhl fiir Informatik VII, RWTH, D-52056 Aachen
Fax: (49) 241-80-22215 {cachat,duparc,thomas}@informatik.rwth-aachen.de

Abstract We study infinite two-player games over pushdown graphs
with a winning condition that refers explicitly to the infinity of the game
graph: A play is won by player 0 if some vertex is visited infinity of-
ten during the play. We show that the set of winning plays is a proper
XY3-set in the Borel hierarchy, thus transcending the Boolean closure of
Yy-sets which arises with the standard automata theoretic winning con-
ditions (such as the Muller, Rabin, or parity condition). We also show
that this ¥3-game over pushdown graphs can be solved effectively (by a
computation of the winning region of player 0 and his memoryless win-
ning strategy). This seems to be a first example of an effectively solvable
game beyond the second level of the Borel hierarchy.

1 Introduction

The theory of infinite two-person games, originally developed in descriptive set
theory, has found enormous interest in recent years also in theoretical computer
science. Whereas in the framework of set theory, the mere existence of winning
strategies is the central question, the applications in computer science are con-
cerned with algorithmic aspects. In the past ten years, this development led to
interesting connections with the verification and automatic synthesis of reactive
programs (see, e.g., [13,16]). It turned out that central problems in the verifi-
cation of state-based systems can be studied in the game theoretical framework
(an example is the model-checking problem for the modal u-calculus), and that
the construction of discrete controllers can be viewed as the synthesis of winning
strategies in certain infinite games.

The standard setting of these applications are the finite-state games. Here
one deals with a finite game graph where each vertex is associated to one of the
two players (called 0 and 1). A play is an infinite sequence of vertices which arises
when a token is moved through the graph, where in each step the token is moved
by the player to whom the current vertex is associated. The winning condition
(say for player 0) is given by an automata theoretic acceptance condition applied
to plays. A prominent example is the Muller condition which is specified by a
family F of vertex sets and which requires that the vertices visited infinitely often

* A preliminary version of this article appeared in the proceedings of CSL 2002, LNCS
2471, pp. 322-336

in the considered play form a set in F. The core result on finite-state games is
the Biichi-Landweber Theorem ([2]). It says that for a game on a finite graph
with Muller winning condition one can compute the “winning region” of player
0 (i-e., the set of vertices from which player 0 has a winning strategy) and that
the corresponding winning strategies are executable by finite automata. Many
more results have been shown, in particular on the so-called parity games, where
even memoryless strategies suffice [5,14].

The Muller and parity winning conditions (as well as related ones like Rabin
and Streett conditions) define sets of plays which are located at a very low level
of the Borel hierarchy, namely in B(X'), the Boolean closure of the Borel class
Y5. This restriction to winning conditions of low set theoretical complexity is
justified by two reasons: First, most winning conditions which are motivated
by practical applications (safety, liveness, assume-guarantee properties, fairness,
etc.), and Boolean combinations thereof, all define sets in B(X5). Secondly, by
Biichi’s and McNaughton’s results on the transformation of monadic second-
order logic formulas into deterministic Muller automata, any winning condition
which is formalizable in linear time temporal logic or in monadic second-order
logic (S18) over infinite strings defines a B(X5)-set. (One transforms a logical
formula ¢ into an equivalent deterministic Muller automaton, say with transition
graph G, and proceeds from a game graph G and a winning condition defined
by ¢ to G x G, as game graph equipped with the Muller winning condition
applied to the second components of vertices.) In this connection, Biichi claims
in [3, p- 1173] as a general thesis that any set of w-sequences with an “honestly
finite presentation” (by some form of “finite-state recursion”) belongs to B(X5).

Recently, the Biichi-Landweber Theorem was extended to infinite game graphs,
and in particular to the transition graphs of pushdown automata [10,11,16]. For
example, it was shown by Walukiewicz [16] that parity games over pushdown
graphs can be solved effectively. But the restriction to the parity condition is now
only justifiable by pragmatic aspects, and it is well conceivable that higher levels
of the Borel hierarchy are reachable by natural winning conditions exploiting the
infinity of pushdown transition graphs.

In the present paper we propose such a winning condition, by the requirement
that (in a winning play) there should be one vertex occurring infinitely often.
Syntactically, this is formulated as a condition on a play p using a X'3-prefix of
unbounded quantifiers:

“there is a vertex v such that for all time instances ¢ there is ¢’ > ¢ such
that v is visited at ¢’ in the play p under consideration”

In Section 3 below we show that for a suitable deterministic pushdown au-
tomaton the corresponding set of winning plays forms indeed a X'3-complete
set in the Borel hierarchy. The completeness proof needs some prerequisites of
set theory, in particular on continuous reductions and the Wadge game [15]. In
Section 2, these preparations are collected.

In Section 4 we show that the X3-winning condition does not prohibit an
algorithmic solution of the corresponding games. Building on the approach of

[4] for Biichi games over pushdown graphs, we present an algorithm to decide
whether a given vertex of a pushdown transition graph is in the winning region
of player 0; and from this, also a memoryless winning strategy can be extracted.

In the final section we discuss some related acceptance conditions (studied in
ongoing work) which involve a specified set F' of vertices and requires that some
v € F is visited infinitely.

The main result of this paper may be considered as a first tiny step in a
far-reaching proposal of Biichi ([3, p.1171-72]). He considers constructive game
presentations by “state-recursions”, as they arise in automata theoretic games,
and he asks to extend the construction of winning strategies in the form of
“recursions” (i.e., algorithmic procedures) from the case of B(X2)-games to
appropriate games on arbitrary levels of the Borel hierarchy.

2 Borel Hierarchy and Wadge Game

Given a finite alphabet X', we consider the set X* of all infinite words over X
as a topological space by equipping it with the Cantor topology, where the open
sets are those of the form W - X for some set W C X* of finite words. The finite
Borel Hierarchy is a sequence X, IT, ¥y, II,. .. of classes of w-languages over
X, inductively defined by:

— X, ={Open sets} = {W-Xv: W C X*}
—an{Ac: AeEn} (for n > 1)

— Xyl = {UAZ VieN A,’EHTL} (fornEO)
iEN

Let B(X),) be the class of Boolean combinations of X,,-sets. The Borel classes
are arranged in the form

X X,
I\B(E)/ 2\
/ 1\ /

7
B(X,)
H1 H2 \

where each arrow denotes strict inclusion. A set that is in X, but not in IT;, is
called a true-Xy-set. (For background see e.g. [9].)

Recall that a function ¢ : Y% — X% is continuous if every inverse image
of an open set is open. In other words, for any Wp C X% there exists some
Wy C X% such that z € Wy - XY <= ¢(z) € W - X¥. Now, given A C X4
and B C X%, we say A continuously reduces to B (denoted A <y B since
originally studied by Wadge [15]) if there is a continuous mapping ¢ such that
z € A < ¢(z) € B. This ordering should be regarded as a measure of
topological complexity. Intuitively A <y B means that A is less complicated
than B with regard to the topological structure.

One among many properties about this ordering is that for each integer n, if
A is X,-complete (i.e. both A € X, and B <w A holds for all B €), then
A is a true X ,;-set, which means it does not belong to IT .

The main device in working with this measure of complexity is a game that
links the existence of a winning strategy for a player to the existence of a con-
tinuous function that witnesses the relation A <y B:

Definition 1 (Wadge game) Given A C Y4, B C Y%, W(A, B) is an
infinite two player game between players I and II where players take turns, I
plays letters in X 4, and I plays finite words over the alphabet Xp. At the end
of an infinite play (in w moves), I has produced an w-sequence x € X% of letters
and IT has produced an w-sequence of finite words which concatenated give rise
to a finite or w-word y € X5 U X%, The winning condition on the resulting play,
denoted here z"y, is the following:

I wins the play 'y <=qes y is infinite A (x € A<— y € B)
Proposition 2 ([15]) I has a winning strategy in W (A , B) < A <y B.

Example 3 Consider the set J of all infinite words over the alphabet {0, 1} that
have infinitely many 0. We show that J is ITs-complete.
To verify J € ITs we note that the complement J¢ belongs to Xs:

e¢l] <= ze [J{o,1}" 1.

neN

Note that {0,1}™-1“ is the complement of {0,1}"-{0,1}*-0-{0,1}* and hence
a IT,-set, whence |J,,n{0,1}" - 1¢ is a Xy-set. To show IT-completeness, let
A be any set in ITy, A=, \Wn - X%, with W, C X*. We describe a winning
strategy for player I in the game W (A , J):
Set ¢ := 0,
do

if I’s current position u does not have any prefix in W,

then play the letter 1, ¢ remains the same,

else play the letter 0,7 :=¢+ 1,
od

Clearly, this strategy is winning for I since it induces an infinite word y that

contains infinitely many 0 if and only if the infinite word x played by I belongs
to each and every open set W, - X¥; hence z € A <— y € J.

3 Pushdown Automata with a XY'3-Acceptance condition

We consider deterministic pushdown automata of the form P = (X, I', Q, 6, ¢;),
where X' is the finite input alphabet, I" is the finite stack alphabet, @) is the set
of control states, g; is the initial state, and § is the partial transition function
from @ x (XU {e}) x I' to @ x I'* with the usual restriction on choice between
e-move and X-moves (for all ¢ € Q and a € I', either §(g, &, @) is undefined and
VYa € X 6(q,a,a) is defined, or (g, e,) is defined and Va € X §(q,a,q) is
undefined). A configuration (or “global state”) is a pair (g,w) € @ x I'*, often
written as the word qw, consisting of control state ¢ and stack content w.

Given a € Y U{e}; q,¢' € Q; p,v € I'*; o € I'; we write
a: (g a- /J,)I?(q', v-u) if §(q,a,a) = (¢',v). Finally we denote the transitive

*

closure of —— by ——. So u : (g, V)\?(q’ ,v') holds if the input word u leads

P from the configuration (g,v) to (¢',v').
Let us equip these pushdown automata with the following acceptance condi-
tion: P accepts x € X¢ iff

JgeQIpel*"Vnim>n zlm: (qz',i)l?(q,u),

(where x | m is the initial segment of z up to position m) and let L(P) be the
set of words x € X“ accepted by P. To say it in words, z is accepted if there is a
configuration that occurs infinitely many times while reading x. Or, considering
the fact both @) and I' are finite, a word z is accepted by P iff, while reading z,
for some n the stack content goes back infinitely many times to a word of length
n.

By its very definition, it is easy to see that L(P) belongs to X3: let Ag ,.n
denote the set of finite words u of length precisely n such that, after reading u
(from the initial configuration), P is in configuration (g, u). We have

A= U N U Awense- 2

eN keN
qee_lc—'?* " 6210111
" ~ ~)
621
ell,

[\ /

€23

Let us verify that this representation cannot be improved w.r.t. nesting of X
and IT.

Proposition 4 There exists a DPDA P such that L(P) is X3-complete.

Proof of proposition 4: We consider a DPDA P which adds a “0” on top of the
stack when it reads a 0, and when it reads 1 it deletes one letter, unless the stack
is already empty, in which case it does nothing. Formally, let P = (X, I, @, 4, q)
be the DPDA defined by X' = {0,1}, I' = { 1,0}, Q@ = {q}, and ¢ fixed as follows:

— 0(g,0,1) =(q,0- 1)
- 6((],]-a J—) = (qa J—)
- (5((],0,0) = (q70 . 0)
- 5((],]-a 0) = (q7 6)
The figure shows the configuration graph of P:
0 0 0 0
1CqJ_/ 1*q0¢‘ fqooy 1£ 4000 L : it

In order to prove that L(P) is X3-complete, we need to show that for any
A € X3 the relation A <w L(P) holds. For this purpose, let A be a subset
of X¥* such that A = |J,,cny An where each A, belongs to IT,. Let J be the
IT,-complete set defined above in Example 3. For each n, let 0,, be a winning
strategy for IT in the game W (A4, , J). Let also ¢ : N — N x N be any
bijection that satisfies ¢(k) = (n,m) = m < k. We describe a winning strategy
for I in W (A4, L(P)). We write zg, %1, T2, ... for the letters chosen by I and
Y0, Y1,Y2, - - - for the finite words chosen by II.
Assume ¢(k) = (n,m). Then player II's k** move yj, is defined as follows:

— if Op(xo,21,...,%,) contains the letter 0, then yy, is the shortest sequence
of 0 or 1 such that

*

Yo yi o Yr: (¢, L) —(g,0™ 1)
P
— if O p(wg,x1,---,Tm) does not contain 0, then yr =0
This strategy is well defined since m < k always holds, therefore (zo,1,...,Tm)
is a subsequence of (zg,1,-..,Tx). This strategy is winning for I because, if T

and IT have respectively played = and y, we can we verify that x € A iff y € L(P)
as follows:

If x € A then z € A, for some n. Since 0, is winning for Il in W (4,, , J),
there exist infinitely many m such that 0, (xg, 1, - - .,) contains 0. Therefore,
by construction, the word 0™- L appears infinitely many times as stack content.
Thus y € L(P).

If x ¢ A then x € A, holds for any n. Since 0, is winning for II in
W (4, , J), there exist only finitely many m such that 0 (zo,21,...,Zm) con-
tains 0. So, for each integer n let k, be the smallest integer such that

Vk > k,Vi<n VméeN (¢(k) = (i,m) = O(xo,21,---,Zm) contains no 0).

By construction, after k¥ 4+ n moves, no word 0 L for any i < n will appear as
stack content. This shows that any configuration of P occurs only finitely many
times, hence y & L(P). =

In the next section we are more interested in the set R(P) of successful runs of
P than in L(P). Let us note that also R(P) is a true X3-set:

Proposition 5 Let P be as in the preceding proposition. Then the set R(P) C
(Q - IT'*)¥ of accepting runs of P is Xs-complete.

Proof of proposition 5: It is easy to see that R(P) € X'3; see the explanation of
the acceptance condition in the introduction. In order to verify X's-completeness,
consider the function ¢ : X — (Q-I'*)¥ which associates to ¢ € X* the P-run
pz on z. Obviously, ¢ is continuous (one does not even need the Wadge game to
verify this), and we have z € L(P) <= p, € R(P). Thus L(P) <w R(P). -

It should be noted that for nondeterministic pushdown automata the sit-
uation is much different: As shown by Finkel [6,7], nondeterministic pushdown

automata equipped with the Biichi acceptance condition can recognize Borel-sets
of any finite rank and even non-Borel sets.

4 Effective Solvability

4.1 Outline

In the present section we use pushdown automata for the specification of in-
finite games (between two players 0 and 1) rather than for the definition of
w-languages. The acceptance condition considered in the previous section is now
employed as a winning condition for Player 0. Our aim is to show that for any
such pushdown game one can compute the winning region of Player 0 (the set
of those configurations from which Player 0 can force a win) and, moreover, a
positional winning strategy.

Let us first introduce the game-theoretic setting. A pushdown game graph
is specified by a variant of the pushdown automata considered in the previous
section, which we call pushdown game systems. The input alphabet X' and the
initial state go are canceled, but a partition Q = Qo W (1 of the state set @
into sets Qo, @1 is introduced. Note that by the deletion of X the transitions
become unlabeled, and thus there is not a deterministic transition function any
more but a transition relation: A pushdown game system (PDS) is of the form
P = (I,Qo, Q1,A), where I is the finite stack alphabet,) = QoW Q; the finite
state set, and A C Q x I' X @Q x I'* the finite transition relation. Of course,
given a pushdown game system one may obtain a normal DPDA by introducing
an initial state and a sufficiently large input alphabet X', which would allow to
regain a deterministic (partial) transition function.

A pushdown game system & determines a pushdown game graph Go =
(V,E) with vertex set V = QI'* and the edge set E consisting of the pairs
(pyw, qvp) € V xV such that (p,v,q,v) € A. Define Vo = Qo™ and Vi = Q1.
A play over (V, E) from v € V is a sequence ug, u1,uz,- - built up by the two
players 0,1 as follows: We have ug = v; given u; € Vy, Player 0 chooses ;41 such
that (u;,u;41) € E, and given u; € Vi, Player 1 chooses u;41 with (u;,u;y1) € E.
The play is won by Player 0 iff

there is a configuration from V that appears infinitely often in the play, (1)

equivalently, iff for some length n a configuration of length n is visited infinitely
often. Our aim is to compute the set Wy of winning positions of Player 0: the
positions from which he can win whatever Player 1 does.

As a preparatory step, we recall the definition of winning regions of somewhat
simpler games: reachability games, where Player 0 has to reach a configuration
of a given “target set” T just once in order to win, and Biichi games where
Player 0 has to ensure that infinitely often configurations in 7" are visited. We
recall the corresponding definitions (see, e.g., [13]) which rely on the fact that
our game graphs are of bounded degree. Given a set T' C V', the 0-attractor of

T is the set of configurations from which Player 0 can force the play to reach T'.
It is inductively defined by:

Attrd(T) =T,
Attr§™ (T) = Attr§(T) U {u € Vo | v, (u,v) € E, v € Attr{(T)}
U{u€ Vi | Vo, (u,v) € E=ve Attri(T)},
Attro(T) = Uj;en Attri(T)

Here Attry(T) is the set of configurations from which Player 0 can force a visit
in T in at most i steps. If we slightly modify the definition, we get Attrg (T):
the set of configurations from which Player 0 can force the play to reach T in at
least one move, whatever Player 1 does.

XO(T) = @)

Xinn(T) =X;(T)U{ueVy | v, (u,v) € E, veTUX;(T)}
Uf{ueV | |ul>1, Vo,(u,v) e E=veTUX;(T)} ,

Attrg (T) = U0 Xi(T) -

For technical reasons concerning the definition of Attrg (T), it is convenient
to allow deadlocks by the empty stack in the game graph and to declare here
Player 1 as the winner of any play terminating with empty stack.

We are now able to define Biichig(7T'), the set of those configurations from
which Player 0 can force to reach T infinitely many times (to win the “Biichi
game for T7):

Biichi)(T) =V,
Biichijt(T) = Attr{ (Biichi) (T)NT) ,
Biichig(T) = [;ey Biichij(T)

We note I'SM the language {e} U U---U I'™. The effective solution of push-
down games with winning condition (1) is based on the following straightforward
representation of the winning region Wy of player 0:

Proposition 6 Over a game graph induced by a pushdown game system, the
winning region Wy of Player 0 w.r.t. winning condition (1) is
Wo =Unrso Biichio(QI'SM).

Let us refine this into an algorithmic description of Wy. In [4] it is shown that if
the set T is regular (the configurations of the pushdown game graph are consid-
ered as words), then one can compute a finite automaton recognizing Attrq(T),
respectively Attrd (T), which hence are again regular. Using the regularity of
Attrd (T) one can compute a finite automaton recognizing Biichig(T). Of course
I'SM g regular for M > 0, so Biichio(QI'SM) can be computed. To compute
the set Wy of Proposition 6, we finally have to overcome the problem that W
is an infinite union. We shall prove that

Wo = Attro(Biichip(QI'S™) o I'*)

where N = 1+|I'||Q| max{|v|—1| (p,7,q,v) € A}, and the set Biichiq(QI'SY)e
I'* will be defined later (it is almost Biichig(QI'SY) - I'*). The idea is that if

Player 1 can make the stack increase by more than N letters, then he can make it
increase indefinitely (without returning to previous stack contents an unbounded
number of times) and thus wins.

4.2 Details

We first recall the constructions of [4]. Given a regular set T' of configurations,
it is recognized by a finite automaton .o/ over the alphabet Q) WI'. Then a finite
construction, originally presented in [1] in the framework of alternating push-
down systems, transforms @/ into &s-(7), an alternating finite automaton that
recognizes Attro(T). The state space remains the same during the construction,
the algorithm just adds new transitions. By an obvious modification of the al-
gorithm, it is possible to construct a finite automaton &4, (7), recognizing
Attrd (T).

We describe here the format of these automata and explain how to use them
for the construction of an automaton recognizing Biichig(7'). The automata to
recognize sets of configurations are alternating finite word automata with a spe-
cial convention about initial states: Given a PDS & = (I, Qo, Q1,4), a £-
automaton is a finite automaton & = (P, I, —,Q,F), where P D @ is its
finite set of states, — C P x (I'U {e}) x 2F the set of transitions, Q C P
the set of initial states (note that these are the control locations of &), and
F C P a set of final states. A transition » -3 S indicates a move from state r
via letter v € I' simultaneously to all states of S, i.e. by a universal branching of
runs. Existential branchings are captured by nondeterminism. (So, a transition
like r 25 (ry Ara) V (13 Ary) is represented here by two transitions r X5 {ry,r2}
and r X5 {r3,74}.) For each p € P and w € I'*, the automaton & accepts a
configuration pw € QI'™ iff there exists a successful &/-run on w from the initial
state p. Successful runs are defined in the standard way, using computation trees
for the representation of simultaneously active states; the acceptance condition
requires that some computation tree exists which at every leaf ends in a final
state. By ¢ xS we indicate that such a computation tree exists on input qw
such that its leaf states form the set S.

Let us explain the transformation of a #-automaton & recognizing T' into
a P-automaton recognizing Biichig(7T"). We consider the case T = QI'SM for a
given number M and set

Yo' =Qr<M , v, = Attrf (YM)n QI<sM ,and VY = (VM.
i>0

In the sequel the relation E is written in infix-notation with the symbol “—”:
so we have (u,v) € E <= wu < v and also (p,7v,q,v) € A <= py — qu.
Consider the PDS & = (I',Qo, Q1,4) with @ = Qo U Q1. The construction of
the automaton recognizing Y starts with a #-automaton %y which recognizes
QIT'SM: its state set is QU {fo,- -+, fm}, with transitions f; Ly ;4 fori < M,

each f; being a final state, and the states of @ U {fo} are merged into a unique
state named fo, i.e., fo is initial.

In stages or “generations” ¢ = 1,2,3,--- new copies of () are added. We write
(g,1) or short ¢* for the copy of a node q € added in stage i. So the state space
will by a subset of (Q x N) U{fo,...,fam} (where ¢° = fo for all ¢ € Q). We
write @ for the set Q x {i}. Two auxiliary operations are needed which refer to
this indexing by stages:

Definition 7 For a finite set S C (Q x N) U {fo,..., fu} let
¢(S) ={d' | ¢'*' € S} U (SN {fo,-- . fu})
with the convention that ¢° is fo for all q.
Definition 8 Fori >0 and a set S C (Q x [1,4]) U {fo,- -+, fnm}, let
m(S)={d" | Fi 2k >0,¢" € SYU(SN{fo, -, fu}) -
This is the projection of the set S on the generation i (except for {fo, -, far}).

Algorithm 9 To compute an automaton recognizing Y.
Input: PDS & = (I,Qo,Q1,A4) and M >0
Output: a &-automaton € that recognizes Y

Initialization: Set € := By recognizing QI'SM = Z,, with states ¢° (forq € Q)
and fo,- .., fu, where for all ¢ € Q, ¢° is set to be fo. (Recall that for all
v €T, fi =X fir1, and the f;’s are the final states.)
1:=0.
repeat
i:=14i+ 1 (i is number of the current generation)
Add the states q', for each q € Q, using them as initial states.
Add an e-transition from ¢* to ¢*~' for each q € Q
{obtain an automaton still recognizing Z;_1 }
Add new transitions to € by the saturation procedure presented in [4]:
repeat
(Player 0) if p € Qo, py = qu € A and ¢' £, S in the current automa-
ton, then add a new transition p' 15 S.
(Player 1) if p € Q1, {py < qp1, - ,PY < Gnptn} are all the A-
rules (game moves) starting from py and Vk, g}, L% Sy in the current
automaton, then add a new transition p* X5 |, Sk.
until no new transition can be added
{ the obtained automaton recognizes Attro(Z;_1) }
remove the e-transitions.
{ obtain B, recognizing Attry (Z;—1) = Z! }
replace each transition ¢* 5 S by ¢* L5 7i(9).
{ obtain B} recognizing Z!' C Z] }
replace each transition ¢ 25 S by ¢ 25 S U {fo}
{ obtain B; recognizing Z!' N QI'SM = Z;, we have ;5. YM C Z; }
set € = PB;, finishing generation number i -

10

untili > 1 and Vp,v: p' LS < p=1 25 ¢(S) .

Note that we can erase the ¢*~"’s and their transitions as soon as the generation
1 is done. To compare successive generations we have the following property.

—1»

Proposition 10 In Algorithm 9, for allv € I'*,q € Q,i > 1 we have
q”l 3 S = qi s (b(S)

The proofs of this proposition and of the following theorem are similar to the
corresponding claims in [4]; for completeness they are given in the appendix.
Note that because of the projection 7, the transitions q* %+« S verify S C (Q x
{i})U{fo,---, fm}. Note also that no new transition from the states fo,-- -, fmr
is added.

Theorem 11 The automaton € constructed in Algorithm 9 recognizes Y .

It remains to eliminate the quantification on M implicit in |J ;- o Biichio (QI'SM),
by choosing a sufficiently large bound for M. We introduce an ordering relation
which permits to compare transitions.

Definition 12 For any S, 5" C Q*U {fo, -, fm},

SCg @{Sﬂ@i C S'NQ and

= max({j | f; € S}U{-1}) <max({j | f; € S’} U{-1})
The idea is that in case S C S’, one recognizes “more” after a transition g*: — S
than after a transition ¢* — S’. To compare transitions ¢ — S and ¢/ — S',
with ¢ < j, one considers 7;(S) and S’ with respect to C. The index j of f; € S
measures the possibility for Player 1 to increase the length of the stack, and
possibly win.

Proposition 13 In the automaton € constructed by Algorithm 9, assume that
for a transition ¢¢ -5 S we have S T S’ for each transition ¢* 25 S' from the
same state. If £ = max{j | f; € S} > 0, then from the configuration g7, Player
1 has o strategy to reach a configuration where the length of the stack is at least
£ and such that this £ letters will never be “popped”.

Proof of proposition 13: Induction on the number of transitions constructed by
the algorithm. Note that the projection 7¢ does not change the value of £. If
£ =0, the property is trivially true.

In the generation number 1, there is an e-transition from each ¢' to fy. If for
some ¢,y and £ we have the hypotheses of the proposition, then it follows that:
- either ¢ € Q¢ and every transition ¢y < ¢'u € A add at least £ letters to the
stack, moreover Player 0 has no possibility to decrease the stack length from ¢'p
(otherwise we would have a path ¢' -3, S, and another transition added),

- or ¢ € 1 and there is a transition ¢y < ¢'u € A that adds at least £ letters to
the stack, moreover Player 0 has no possibility to decrease the stack length from
q' 1 (otherwise we would have a path ¢'* £, S, and another transition added).

11

For the next generations we have the same argument, relying on the preceding
generations. If ¢ € ()1 then there is a transition ¢y < ¢'v'v € A such that from
q'y' Player 1 can reach a configuration with £; letters (applying the proposition
to the previous generation) and £ = ¢; + |v|. And similarly for ¢ € Q. =

We consider now N =1+ |I'||Q| max{|g| — 1 | 3 py — gqu € A}. The rightmost
factor is the maximal number of letters that can be added to the stack in one
move.

Proposition 14 In the automaton € constructed by Algorithm 9, assume again
that for a transition ¢' <25 S we have S T S’ for each transition ¢ -1 S’ from
the same state. If { = max{j | f; € S} > N, then from configuration qv, Player
1 can win the game by increasing the stack indefinitely.

Proof of proposition 14: According to the previous proposition, Player 1 can
ensure the stack increases by at least £ letters, that will never be poped. Using
an argument similar to the classical pumping argument (see e.g. [8]), there exists
(¢,a) € Q x I' such that, during this process, two different configurations gav
and qalv are met (v € I'*, ¢ € I'"), and the letters of v and ¢ are not scanned
(nor changed) any more in the stack after these configurations. This proves
that continuing from gaév, Player 1 can force the stack to increase indefinitely.
This shows that a configuration in ¢yI™ cannot be in the winning region Wy of
Player 0. -

It follows from the proposition that in 4 we can eliminate transitions ¢' — S,
such that f; € S,j > N. So intuitively the computation of Y is sufficient to
determine Y for all M > N. We have clearly V.Y C Wy, and also YN -I'™* C W,
because in the computation of Y we have assumed that if the stack is empty,
Player 0 loses. Hence Attro(YXT'*) C Wy, but the equality does not hold in
general.

In the automaton obtained from Algorithm 9 for a given M > 0 the next
step is to merge the states f to a unique final state f, and to add a transition
f-XLs f for all v € I', to obtain an automaton %”. We will note Y/ @ I'* the set
of configurations recognized by ¥”. Nevertheless the set Y/ o I'* is defined only
by the algorithm, and there is no language theoretical definition of Y/ e I'* from
YM. We have YM - I'* C YM o I'* but the equality does not hold in general,
because the automaton is alternating. Now we can prove the following.

Corollary 15 For all M > N, YN eI* =YM o I'*.

Proof of corollary 15: The inclusion from left to right is clear. For the other
inclusion, the automaton recognizing Y/ e I'* “contains” that of Y¥ e I'*. Tt
has possibly some other transitions ¢' — S, with f; € S,j > N, which verify
the hypotheses of Proposition 14. Those transitions do not permit to accept a
configuration in Wy, i.e., no winning play from such a configuration is possible.
But clearly Y o I'* C J,- 0 Biichio(QI'SM) C Wy (a play from Y is also
possible from YM e I'*. See Proposition 6). 8

12

Theorem 16 Given a pushdown game system, one can compute a finite au-
tomaton recognizing the winning region

Wo = Attro(YY o I'*)
of Player 0 w.r.t. the X3-winning condition (1).
Proof of theorem 16: Clearly Attro(YY e I'*) C Wy. Proposition 6 states that

Wo = | J Biichio(QI'<M),
M>0

which is, by the preceding proposition,

U Attro(VY) € | Attro(Y o I'™) C Attro(YY o T'*) .
M>0 M>0

_|

The construction of an automaton recognizing Wy = Attre(YLY e I'*) works
as follows: one uses Algorithm 9 with M = N. The resulting automaton %
recognizes Y. Now one merges the states fj, to a unique final state f, and one
adds a transition f -2 f for all v € I', in order to obtain an automaton 4" which
recognizes Y e I'*. To recognize Attro(Y.Y eI'*) we just need another application
of the saturation procedure as it appears in Algorithm 9, which finally results in
an (alternating) automaton %" which recognizes Wj.

In the definition of Attrg, the “usual” convention about deadlocks (with
empty stack) is implicitly assumed. So finally at the end of the computation of
Attrg(YY o I'*), the states pit! with p € @ has to be marked as final. They
correspond to the possibility for Player 0 to win by reaching a configuration
with empty stack when Player 1 is on. We did not assumed this convention in
the definition of Attr] because it would have compromised the computation of
Biichig(QI'SN) o I'*. Tt is also possible to consider a bottom stack symbol (L),
but it has to be defined explicitly in I" and A and treated as a stack letter.

Following the constructions of [4], it is easy to extract a (positional) winning
strategy for player 0 on the set Wy. The choice of an appropriate transition from
a game graph vertex qw € Wy is done by analyzing an accepting run of the
automaton ¢’ on the input qw. For the details we have to refer to [4].

5 Discussion and Concluding Remarks

The X'3-acceptance condition considered above was introduced as an example,
illustrating the possibility to reach higher levels of the Borel hierarchy than
B(X). For applications in w-language theory a more general form is appropriate,
referring to a set F' C QI™*: Call a DPDA-run p accepting if

JweFVYidji>ip(j)=w. (2)

13

If F is finite, then this condition is equivalent to
Vidji>iIweF p(j)=w, 3)

i.e., to the usual Biichi acceptance condition. In order to define an interesting
class of w-languages including true Xs-sets, it is necessary to combine the ac-
ceptance conditions (2) and (3). Note that condition (2) alone does not allow
to simulate condition (3): For example, the w-language over {0, 1, $} which con-
tains:
— all w-words over {0, 1}, and
— the w-words u$ufz with u € {0,1}* and arbitrary z € {0,1,$}*
is recognizable by a DPDA with the Biichi acceptance condition (3) but not
definable with acceptance condition (2).

How can one reach even higher levels of the Borel hierarchy than just 3'5?
A natural idea is to require infinitely many configurations, each of them being
visited infinitely often, as accepting condition:

*

Vjdgu e QI'r*vniIm>n x| m: (qi,J_)\?(q,u). (4)

Remarkably, this condition comes down to a X3 condition: it is logically equiva-
lent to the conjunction of our X'; condition (one configuration is visited infinitely
often) and the condition that the stack growth is unbounded:

Aqu e QI* Yn I r,s,t >n 3¢y € Qe

(m v Db e A ol (qz-,m%@',u')) .

Let us modify (4) by moving slightly the occurrence of control state in the
formula:

*

ViVgeQIuel'r*vnim>n z|m: (q,-,J_)I?(q,u). (5)

In other words, if we call g-configuration the words of the form qu € {q}I"*, we
deal with the condition:

for all state ¢ there exists infinitely many
g-configurations that are visited infinitely often,

This can be shown to be a II -acceptance condition which does not collapse to
X3: it leads to true II4 sets. The same holds for the closely related condition
where g is fixed

there exists infinitely many g-configurations
that are visited infinitely often.

14

Acknowledgment

We thank Olivier Serre and the referees for useful remarks.

References

1. A. Bouajjani, J. Esparza, and O. Maler, Reachability analysis of pushdown au-
tomata: Application to model-checking, CONCUR 97, LNCS 1243, pp 135-150, 1997.

2. J.R. Biichi, Landweber L.H., Solving sequential conditions by finite-state strategy.
Transactions of the American Mathematical Society vol. 138 (1969) 295-311

3. J.R. Biichi, State-strategies for games in F,s NG5, J. Symbolic Logic 48 (1983), no.
4,1171-1198.

4. T. Cachat, Symbolic strategy synthesis for games on pushdown graphs, in:
ICALP’02, Springer LNCS (to appear).
http://www-i7.informatik.rwth-aachen.de/cachat/

5. E. A. Emerson and C. S. Jutla, Tree automata, mu-calculus and determinacy,
FoCS '91, IEEE Computer Society Press (1991), pp. 368-377.

6. O. Finkel, Topological properties of omega context-free languages, Theoret. Comput.
Sei. 262 (2001), no. 1-2, 669-697.

7. O. Finkel, Wadge hierarchy of omega context-free languages, Theoret. Comput. Sci.
269 (2001), no. 1-2, 283-315.

8. J. E. Hopcroft and J. D. Ullman, Formal Languages and their relation to automata,
Addison-Wesley, 1969.

9. A. S. Kechris, Classical descriptive set theory, Graduate texts in mathematics, vol
156, Springer Verlag (1994)

10. O. Kupferman and M. Y. Vardi, An Automata-Theoretic Approach to Reasoning
about Infinite-State Systems, CAV 2000, LNCS 1855, 2000.

11. S. Seibert, Effektive Strategiekonstruktionen fir Gale-Stewart-Spiele auf Transi-
tionsgraphen, Technical Report 9611, Institut fiir Informatik und Praktische Mathe-
matik, Christian-Albrechts-Universitit zu Kiel, Germany, July 1996.

12. C. Stirling, Modal and Temporal Properties of Processes, Springer (Texts in Com-
puter Science), 2001.

13. W. Thomas, On the synthesis of strategies in infinite games, STACS ’95, LNCS
900, pp. 1-13, 1995.

14. W. Thomas, Languages, automata, and logic, in Handbook of Formal Language
Theory (G. Rozenberg, A. Salomaa, Eds.), Vol 3, Springer-Verlag, Berlin 1997, pp.
389-455.

15. W.W. Wadge Reducibility and Determinateness on the Baire Space Ph.D. Thesis,
University of California, Berkeley, 1984.

16. I. Walukiewicz, Pushdown processes: games and model checking, CAV ’96, LNCS
1102, pp 62-74, 1996. Full version in Information and Computation 164, pp. 234-263,
2001.

15

Appendix

Proof: Proposition 10
We proceed by induction on i. The proposition is a direct consequence of the
same property over the transitions (by induction on the length of the word).

— For ¢ = 1, we use another induction on the number of transitions starting
from p? added by the saturation procedure: during the saturation procedure,
for each new transition p? -2 S, we want to check that p* -5 ¢(72(S) U fo)
(because at the end of generation 2, we will have p? X5 72(S) U fo).

As a preliminary remark, we observe that once the first generation is done,
each path ¢' £, S from a state ¢! is such that S C @ x {1}U{fo, -+, fum},
hence 7(2(5) - Q X {2}U{f07 o an}a ¢(W2(S)) - Q X {1}U{f07) JfM}J
and ¢(m%(S)) = S. We also know that fo € S.

- At the beginning of the second iteration, one has no other transitions from
the states ¢> than ¢ - {¢?} and ¢*> - {¢'}, which are temporary.

- during the saturation procedure, as a new transition p? -1y S is added, it
is through an existing path ¢> £+ S (see algorithm).

If this path uses just e-transitions (g = €, S C @ x [1,2]), then a simi-
lar path form q¢' existed during the first iteration, generating a transition
pt L ¢(72(9)) (where we choose to stay in @ x {1}). Hence at the end of
first generation, one gets p! X5 7 (¢(72(S))) U fo, and 7 (¢(x2(5))) U fo =
#(72(9))U fo = ¢(w2(S) U fo). Whereas at the end of the second generation,
the transition generated is actually p? -2 72(S) U fo.

If the first segment of this path ¢ 4.5 is a “real” transition ¢ 25T,
a € T, then by induction hypothesis one has also ¢! 5« ¢(72(S) U fo), and
the corresponding transition from p! was added.

If the first segment is ¢ —»¢' -3 T, then similarly, because of ¢' -2 T
already existing, the corresponding transition from p!' was added.

— induction hypothesis: VS, p’ 25 S = pi~! -2 ¢(9)

— the proof for i + 1 is similar to the case i = 1

Proof: Theorem 11

Proof of termination

Thanks to the projections 7'’s, there is only bounded number of possible transi-
tions from each row of pi’s. And thanks to Proposition 10, there is less and less
transitions until the algorithm reaches a fixed point.

Proof of correctness

We note Z; the language recognized by % from the initial states pi’s. We denote
n+1 the last generation of the algorithm, which is such that Z,, = Z,,11, by con-
vention we still consider Z; = Z,, for all ¢ > n. One has to show that Z,, = Yojgf .
We consider the intermediate results (stages) of Algorithm 9: near the end of the
i-th generation, just after one removes the e-transitions, one gets the automaton

B, recognizing Z;. Then, just after the projection, one gets B, recognizing

16

Z;'. Finally one gets %;, recognizing Z;, by replacing each transition p' 25 S by
p' 5 SU{fo}-

First part: Z,, C Yoﬁ/f .
We prove by induction on ¢ that for all ¢, Z; C Y.

— Remembering that for all p € @, p° is set to be fo, Zg = Yy = QI'SM.

— Induction hypothesis: Z; C Y;.

— The algorithm first determines the Attractort of the language (see [4]). By
monotonicity,

2}y, = Attr (Z;) C Attrd (Vi) = Yy, .

After the projection of the transitions, the obtained language Z},; is con-
tained in Z;,,: Proposition 10 shows that an accepting path from a state
pit! was possible before the projection (through the states pf). So Zi, C
Zi,, €Y/, (for i = 0 the projection does not change any transition). The
next operation of the algorithm “computes” the intersection with QI'SM,
Here we just need an inclusion. In the resulting automaton %;, 1, each tran-
sition from a p**! has at least a “branch” that goes to {fo,--- , far}, so it is

clear that Z; C QI'SM. Also Z; C Z}!,,, and
Zip1 C ZIa nQIsM C Y/, nQrs" = vy, .
We conclude that Vi, Z,, = Z,,.1 CY;, and so Z, C Y4,

Second part: YM C Z,,.
We prove by induction on i that for all i, Y C Z;.

— By construction, Y C Y, = Z,.
— Induction hypothesis: Y1 C Z;.
— Before the projection we have (see [4]):

Yy = Attr(')"(Yojc\:[) C Attrf (Z;) = Zity -

To go to Z}!,;, we proceed by induction on the number of transitions that
are changed by the projection, i.e., we consider the successive automata
o, D, where L(oh) = Zi, |, (&) = Zj,,, and o7, is obtained
from «7; by “projecting” one transition. We have to prove by induction on
m that Y C L(47,).

~Ifm=0,Y® C L(#h) = ZL,, = Z!',.

- Induction hypothesis: Y C L(4%,).

- We suppose by absurd that there is a configuration pu € L(%;,)\L(%m11)
such that pp € Y°°. We choose that of minimal length |pu|. For each accept-
ing path labelled by pu in &, there is a decomposition pi*! %+« S %)* F C

{fo, -+, fm} such that y = v€, with ¢* € S, and in ,,41: =3(¢**+? #* F' C
{fo,+++,fm}) (the transition that is projected was “leading” to ¢' in &,

17

and is now “leading” to ¢*1).

This means that ¢€ € Z; and ¢€ & L(&pm41)-

If g€ & L(4y), then ¢¢ ¢ Y (Ind. hyp.), and pu should not stay in ¥
(see [4]), hence the contradiction.

If g¢ € L()\L(Hjns1), then g€ cannot be in Y by hypotheses: v # €
and |g€| < |pu|. If g€ is not in Y, then py should not be in Y (see [4]),
hence the contradiction.

We conclude that Y C L(p41).

We have now Attrg (Y) C Z!', |, hence

Y¥ = Attrf YY) nQIrsM™ C z!, nQrs™.

It is now clear that Z!, N QI'SM C Z; 1. (note that the inclusion from
right to left was proved above.)

18

